Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1653058 | Materials Letters | 2007 | 6 Pages |
Nd3+-doped titania nanoparticles with mesostructures were synthesized via hydrothermal process by using cetyltrimethylammonium bromide (CTAB) as directing and pore-forming agent. The obtained materials were characterized by XRD, nitrogen adsorption–desorption, TEM and DRS. The existence of neodymium ion affect significantly the phase transition of the amorphous to anatase, and the band-gap energy was reduced because of the defect energy level induced by the 4f atomic orbital of Nd3+ with the optimal content of 1.5 at.% Nd. Density functional theory calculations can explain the band-gap narrowing. The maximum photocatalytic activity corresponds to the 0.5 at.% Nd3+-doped anatase nanopowders with mesostructures, which is higher than that of undoped samples.