Article ID Journal Published Year Pages File Type
1657335 Surface and Coatings Technology 2015 6 Pages PDF
Abstract
Such doped surfaces showed the ability of catalytic decomposition of exogenous donor S-nitroso-N-acetyl-penicillamine (SNAP) to generate nitric oxide (NO). Based on SEM and fluorescence analysis results, such films had the ability to inhibit platelet adhesion and activation with SNAP in vitro. This study suggested that the films were capable of generating physiological levels of NO in the presence of endogenous donor S-nitrosothiols (RSNO) when in contact with blood. So the films may be useful to improve the hemocompatibility of blood contact devices.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,