Article ID Journal Published Year Pages File Type
1658784 Surface and Coatings Technology 2010 5 Pages PDF
Abstract

The residual porosity of structural silicon carbide (SiC) composites limits their use in advanced nuclear systems. The use of thick coatings of high-Z materials like tungsten (W) or tungsten alloys (W1−xRex) is a promising solution to overcome such problems. However, solid-state reactions occur between SiC and metals at high temperatures. An intermediate layer is therefore selected, based on thermodynamic computation. It is shown that aluminum nitride (AlN) could limit the interface reactivity at temperatures close to 1000 °C. Duplex AlN/W1−xRex coatings were fabricated in two steps by chemical vapor deposition on bulk silicon carbide to verify experimentally the theoretical material solution approach. Electron probe micro-analyses showed that, at the micrometer level, there was no interface reaction during the growth process. It is the first time that such a material stack has been fabricated, and it seems promising for the high-temperature use of SiC with tungsten alloys.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , , , , , , , ,