Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1659460 | Surface and Coatings Technology | 2011 | 6 Pages |
The hot-corrosion behavior of uncoated SiC, bulk mullite and CVD grown mullite coatings in contact with Na2SO4 were investigated at 1200 °C. The range of thermodynamic activity of Na2O (10− 4 to 10− 6) simulated in this study makes the oxide very basic leading to high reaction rates with SiO2. Uncoated SiC corroded severely, forming various Na2O·SiO2 compounds with a significant weight gain. Even though the thermodynamic activity of silica is reduced in mullite, several compounds in Na2O·SiO2·Al2O3 system were formed in case of bulk mullite. CVD based mullite coatings with high alumina content at the top surface of the coating, and therefore reduced SiO2 activity, offered protection to the underlying SiC in corrosive environments. As predicted correctly by thermodynamic calculations, the trend in weight gain with the coated SiC samples followed the theoretically calculated SiO2 activity in Al-rich mullite.
Research Highlights► Uncoated SiC corroded severely in Na2SO4 environments. ► Stoichiometric mullite corroded less than SiC. ► CVD coated SiC did not undergo corrosion.