Article ID Journal Published Year Pages File Type
1659756 Surface and Coatings Technology 2010 6 Pages PDF
Abstract

Superhydrophobic cotton fabrics were prepared by fabricating rough surfaces using SiO2 nanoparticles and ZnO nanorod arrays together with subsequent n-dodecyltrimethoxysilane (DTMS) modification. The as-obtained products were characterized by particle size analyzer, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), scanning probe microscope (SPM) and X-ray photoelectron spectroscopy (XPS) respectively. The prepared SiO2 nanoparticle and ZnO nanorod show a similar diameter while the ZnO nanorod has a much higher aspect ratio. The wettability of the cotton fabric samples was investigated by water contact angle (WCA) and roll-off angle measurements. Both treated cotton fabrics exhibit superhydrophobicity with static WCAs of more than 150° for a 5 mL water droplet. The lower roll-off angle of a ZnO treated cotton fabric, which is attributed to the discontinuous three-phase contact line, shows better water-repellent properties.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,