Article ID Journal Published Year Pages File Type
1660559 Surface and Coatings Technology 2009 8 Pages PDF
Abstract
In contrast, for machining of aerospace alloys, when elevated load/temperature combined with intensive adhesive interaction with workpiece material results in unstable attrition wear with deep surface damage, the coating should possess a different set of characteristics. Crystal structure for TiAlN-based coatings is basically B1; but due to a high amount of aluminum, the AlTiN coating contains AlN domains. The coating has a very fine-grained nano-crystalline structure (grains sized around 5 nm). Electron structure of energy levels indicates formation of metallic bonds. This results in plasticity increase at the cost of hot hardness reduction. The surface is able to dissipate energy by means of plastic deformation (instead of crack formation) and in this way, surface damage is reduced.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , , , ,