Article ID Journal Published Year Pages File Type
1660713 Surface and Coatings Technology 2009 10 Pages PDF
Abstract

The initiation of a class of fatigue cracks observed in thermal barrier coatings (TBCs) subjected to thermal gradient mechanical fatigue testing is investigated. The coating system is based on a NiCoCrAlY bond coat and a partially yttria stabilized zirconia top coat. To explain the development of the cracks of interest, the thermo-mechanical response of the bond coat and the thermally grown oxide (TGO) is examined and quantified through finite element analyses. The models include non-linear and time-dependent behavior such as creep, TGO growth stress, and thermo-mechanical cyclic loading. The simulations suggest that stress-redistribution due to creep can lead to tensile stresses in the TGO during TGMF testing that are large enough to initiate the cracks investigated.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , ,