Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1660713 | Surface and Coatings Technology | 2009 | 10 Pages |
The initiation of a class of fatigue cracks observed in thermal barrier coatings (TBCs) subjected to thermal gradient mechanical fatigue testing is investigated. The coating system is based on a NiCoCrAlY bond coat and a partially yttria stabilized zirconia top coat. To explain the development of the cracks of interest, the thermo-mechanical response of the bond coat and the thermally grown oxide (TGO) is examined and quantified through finite element analyses. The models include non-linear and time-dependent behavior such as creep, TGO growth stress, and thermo-mechanical cyclic loading. The simulations suggest that stress-redistribution due to creep can lead to tensile stresses in the TGO during TGMF testing that are large enough to initiate the cracks investigated.