Article ID Journal Published Year Pages File Type
1660847 Surface and Coatings Technology 2007 5 Pages PDF
Abstract

This investigation examined how titanium ion implantation pre-treatment affects the residual stress of TiN coatings on M2 high-speed steel. Ions were implanted by metal plasma ion implantation. The adhesion strength of the TiN coatings was enhanced by pre-treatment that implanted Ti into the M2 tool steel substrate. The implanted substrate functioned as a buffer layer between the deposited TiN and the tool steel substrate, resulting in variations of the residual stress. The residual stress determined by glancing-angle XRD demonstrates that the deposited TiN films on ion-implanted substrates exhibited reduced compressive stress, from − 3.95 to − 2.41 GPa, which corresponded to a decrease in the grain size of the TiN films. The texture of the TiN film was clearly transformed from the preferred orientation of (220) to (111), subsequently enhancing wear resistance against a tungsten ball.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,