Article ID Journal Published Year Pages File Type
1660880 Surface and Coatings Technology 2007 4 Pages PDF
Abstract

In this study, a new two-step plasma immersion ion implantation technique was developed and applied for the modification of Ti6Al4V alloy; firstly ion implanting with nitrogen at high temperature and followed with oxygen in high dose. A graded titanium oxide–titanium nitride film was obtained on the surface of the Ti6Al4V alloy. The contact angle and the microhardness of the modified alloys were measured. The friction and wear properties of UHMWPE rubbing against the modified alloys under lubrication of distilled water were investigated using a pin-on-disc tribometer. The wettability and the microhardness of the alloy surfaces were found to be increased significantly after ion implantation. The friction coefficient decreased by nearly 5 times and the wear resistance of UHMWPE increased by about 40 times against the ion implanted Ti6Al4V alloy. Many deep furrows were found on the surface of the un-implanted alloy and were absent in the ion implanted surfaces of the alloy.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , ,