Article ID Journal Published Year Pages File Type
1661394 Surface and Coatings Technology 2008 7 Pages PDF
Abstract

A two-step plasma enhanced chemical vapor deposition procedure has been developed to produce high quality SixNyHz films for quantum cascade laser applications. The procedure consists in exposing the GaAs substrate to a controlled N2 plasma previous to the silicon nitride film deposition. The pre-treatment causes the formation of a thin GaN film that passivates the GaAs wafer. The method has been optimized varying RF power, N2 flow rate and process time of the pre-treatments and monitoring their effects on the resulting chemical composition and dielectric properties of the nitride overlayers, by means of infrared spectroscopy, X-ray photoelectron spectroscopy and electric characterizations. A narrow window in the pre-treatment RF power, N2 flux and time values, improves the composition, structural and dielectric properties of the silicon nitride overlayers. The best result has been found depositing the silicon nitride films on GaAs wafer after 2 min of N2 plasma treatment with a power of 20 W and a 50 cm3/min flow rate.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, ,