Article ID Journal Published Year Pages File Type
1661465 Surface and Coatings Technology 2008 12 Pages PDF
Abstract

Poly(o-ethylaniline) coatings were synthesized on copper (Cu) by electrochemical polymerization of o-ethylaniline in an aqueous salicylate solution by using cyclic voltammetry. The characterization of these coatings was carried out by cyclic voltammetry, UV–visible absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results of these characterizations indicate that the aqueous salicylate solution is a suitable medium for the electrochemical polymerization of o-ethylaniline to generate strongly adherent and smooth poly(o-ethylaniline) coatings on Cu substrates. The performance of poly(o-ethylaniline) as protective coating against corrosion of Cu in aqueous 3% NaCl was assessed by the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The results of these studies demonstrate that the poly(o-ethylaniline) coating has ability to protect the Cu against corrosion. The corrosion potential was about 0.078 V versus SCE more positive in aqueous 3% NaCl for the poly(o-ethylaniline) coated Cu (∼ 15 μm thick) than that of uncoated Cu and reduces the corrosion rate of Cu almost by a factor of 70.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , ,