Article ID Journal Published Year Pages File Type
1661951 Surface and Coatings Technology 2006 5 Pages PDF
Abstract
The structure of the layer with the maximum hardness has been additionally investigated by cross-section TEM. It can be shown that the microstructure consists of repeatedly interrupted columns with a lateral size of about 25 nm. Within these columns, globulitic nanocrystallites with a grain size between 6 and 12 nm are present. In addition the TEM investigations have revealed that the layer is composed of alternating aluminum rich and titanium rich layers with a period of about 2.9 nm. It is concluded that the maximum hardness values are mainly caused by the presence of this defined superlattice structure, which hinders the formation and movement of dislocations. By GD-OES depth profiling of the chemical composition it can be shown that the layers possess a good oxidation, by the formation of a thin aluminum oxide passivation layer.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,