Article ID Journal Published Year Pages File Type
166274 Combustion and Flame 2015 8 Pages PDF
Abstract

We combine combustion experiments and density functional theory (DFT) calculations to investigate the formation of chlorobenzenes from oxidative thermal decomposition of 1,3-dichloropropene. Mono- to hexa-chlorobenzenes are observed between 800 and 1150 K, and the extent of chlorination was proportional to the combustion temperature. Higher chlorinated congeners of chlorobenzene (tetra-, penta-, hexa-chlorobenzene) are only observed in trace amounts between 950 and 1050 K. DFT calculations indicate that cyclisation of chlorinated hexatrienes proceeds via open-shell radical pathways. These species represent key components in the formation mechanism of chlorinated polyaromatic hydrocarbons. Results presented herein should provide better understanding of the evolution of soot from combustion/pyrolysis of short chlorinated alkenes.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,