Article ID Journal Published Year Pages File Type
1663173 Surface and Coatings Technology 2006 5 Pages PDF
Abstract
Simple Pt-enriched γ + γ′ coatings were synthesized on René 142 and René N5 Ni-based superalloys by electroplating a thin layer of Pt followed by a diffusion treatment at 1150-1175 °C. The Al content in the resulting γ + γ′ coating was in the range of 16-19 at.% on superalloys with 13-14 at.% Al. After oxidation testing, alumina scale adherence to these γ + γ′ coatings was not as uniform as to the β-(Ni,Pt)Al coatings on the same superalloy substrates. To better understand the effect of Al, Pt and Hf concentrations on coating oxidation resistance, a number of Ni-Pt-Al cast alloys with γ + γ′ or β phase were cyclically oxidized at 1100 °C. The Hf-containing γ + γ′ alloys with 22 at.% Al and 10-30 at.% Pt exhibited similar oxidation resistance to the β alloys with 50 at.% Al. An initial effort was made to increase the Al content in the Pt-enriched γ + γ′ coatings by introducing a short-term aluminizing process via chemical vapor deposition or pack cementation. However, too much Al was deposited, leading to the formation of β or martensitic phase on the coating surface.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , ,