Article ID Journal Published Year Pages File Type
1663230 Surface and Coatings Technology 2006 6 Pages PDF
Abstract
The deposited coatings range from a micro- to nano-layered (TiN/ZrN) structure as the rotation speed of the substrate table was increased. Each layer exhibits a (111) preferred orientation. At rotating speeds in excess of 10 rpm, a nano-multilayered Ti(Zr)N structure is formed, again with each layer having (111) preferred orientation. At the highest rotation speeds the greatest surface hardness and film adhesion strength are attained. This is attributed to the maximized stress accommodation of the nano-multilayer structure, through the different shear elastic modulus of each layer. This research demonstrates that this novel CCMA AIP system is highly flexible in coating material design and capable of mass production.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,