Article ID Journal Published Year Pages File Type
1663320 Surface and Coatings Technology 2006 8 Pages PDF
Abstract

A pulsed CO2 laser was used to treat plasma-sprayed hydroxyapatite coatings. Pulses of 0.74 ms duration and powers equal to 41.6 and 45.3 W were focused onto a 300 μm spot of the coatings surface. The laser beam was scanned with speeds of 6.4 and 9.6 mm/s. The morphology of laser-treated deposits was observed by scanning electron microscopy (SEM) and the crystal phases identified using X-ray diffraction (XRD). This technique enabled also the determination of quantitative phase composition. The laser treatment process was modeled using the Fusion-2D, software and the temperature fields and depth of molten material were predicted. The latter were compared with the experimental ones found in metallographically prepared cross-sections. A reasonable convergence between the model and experiment was achieved after careful optimisation of initial material parameters as such coefficient of optical absorption and emissivity.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,