Article ID Journal Published Year Pages File Type
1664545 Thin Solid Films 2015 7 Pages PDF
Abstract
We report on nanosecond laser-induced damage of pure and mixed oxide thin films deposited by ion beam sputtering. Silica, hafnia and alumina as well as their binary mixtures have been tested in S-on-1 mode at 355 nm and 266 nm using a multiscale approach. The results were analyzed qualitatively to discuss the different fatigue behaviors observed. The absence of a multi-photon absorption step in the 1-on-1 damage thresholds as a function of the band gap indicates defect-mediated damage mechanisms. During the multi-pulse experiments we observed laser-induced defects that cause fatigue effects and preexisting low-density defects, which are insensitive to multiple pulse irradiation. Depending on material and beam size both types of defects (preexisting and light-induced) may contribute equally to the observed damage probability. Comparing the fatigue behavior of the mixtures to their constituting pure oxides, we found that, in general, the fatigue behavior of binary mixtures cannot be interpolated from the behaviors of the pure oxides.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,