Article ID Journal Published Year Pages File Type
1664940 Thin Solid Films 2014 5 Pages PDF
Abstract
Current steering effect of InGaN light emitting diode (LED) structure was demonstrated by forming a high resistivity GaN nanoporous structure. Disk-array patterns with current-injection bridge structures were fabricated on InGaN LED devices through a focused ion beam (FIB) system. GaN nanoporous structure was formed around the FIB-drilled holes through a electrochemical (EC) wet-etching process on a n-type GaN:Si layer under the InGaN active layer. High emission intensity and small peak wavelength blueshift phenomenon of the electroluminescence spectra were observed in the EC-treated region compared with the non-treated region. The branch-like nanoporous structure was formed along the lateral etched direction to steer the injection current in 5 μm-width bridge structures. In the FIB-drilled hole structure, high light emission intensity of the central-disk region was observed by enlarging the bridge width to 10 μm, with a 5 μm EC-treated width, that reduced the current steering effect and increased the light scattering effect on the nanoporous structure. The EC-treated GaN:Si nanoporous structure acted as a high light scattering structure and a current steering structure that has potential on the current confinement for vertical cavity surface emitting laser applications.
Keywords
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , , ,