Article ID Journal Published Year Pages File Type
1665294 Thin Solid Films 2014 8 Pages PDF
Abstract
Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO3) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate-fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al2O3 buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al2O3 buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral-fluid interfacial interactions.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , , , ,