Article ID Journal Published Year Pages File Type
1666119 Thin Solid Films 2013 4 Pages PDF
Abstract

The SrCu2O2 material is a p-type transparent conductive oxide. A theoretical study of the SrCu2O2 crystal is performed with a state of the art implementation of the Density Functional Theory. The simulated crystal structure is compared with available X-ray diffraction data and previous theoretical modeling. Density Functional Perturbation Theory is used to study the vibrational properties of the SrCu2O2 crystal. A symmetry analysis of the optical phonon eigenvectors at the Brillouin zone center is proposed. The Raman spectra simulated using the derivatives of the dielectric susceptibility, show a good agreement with Raman scattering experimental results.

► The symmetry properties of the optical phonons of the SrCu2O2 crystal are analyzed. ► Born charges and the dynamical matrix are calculated at the Brillouin zone center. ► Density Functional Perturbation Theory (DFPT) is used to compute Raman spectrum. ► DFPT Raman spectrum is compared with experimental results.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , ,