Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1666804 | Thin Solid Films | 2013 | 5 Pages |
Highly transparent polyimide–nanocrystalline-titania hybrid materials with a relatively high titania content (up to 90 wt.%) have been fabricated via sol–gel process. The organo-soluble polyimide was synthesized from 4,4′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3′-Diaminodiphenyl sulfone, and 4-aminobenzoic acid. Such carboxylic acid end groups could provide the organic–inorganic bonding with titania. The images of atomic force and scanning electron microscope showed the well-dispersed nanocrystalline-titania. The analytical results of transmission electron microscope and X-ray diffractometer indicated that the formation of nanocrystalline-titania domains of around 3–4 nm in the hybrid films. The experimental results suggest that the prepared hybrid films have high thermal stability, good surface planarity, tunable refractive index (1.61 < n < 2.01), and optical transparency in the visible range. These results indicate that the polyimide–nanocrystalline-titania hybrid materials have potential applications for optical devices.
► Polyimide–titania hybrid materials with up to 90 wt.% titania via sol–gel process. ► The hybrid films are highly transparent. ► Organic–inorganic bonding through the carboxylic acid end groups of polymide. ► Nanocrystalline–titania domains in the hybrid films around 3–4 nm. ► High thermal stability, good surface planarity, tunable refractive index are obtained.