Article ID Journal Published Year Pages File Type
1667878 Thin Solid Films 2011 4 Pages PDF
Abstract

The P content dependences of the crystallization behavior, thermal stability and soft-magnetic properties of high Fe content Fe83.3Si4Cu0.7B12 − xPx (x = 0 to 8) nanocrystalline soft-magnetic alloys were investigated. P addition is very effective in widening the optimum annealing temperature range and refining of bcc-Fe grain size in addition to the increasing of nanocrystalline grain density. Uniform nanocrystalline bcc-Fe grains with average size of about 20 nm and number density of 1023–1024 /m3 were prepared at around x = 6–8 for the annealed Fe83.3Si4Cu0.7B12 − xPx alloys. The coercivity Hc markedly decreases with increasing x and exhibits a minimum at around x = 6–8, while the saturation magnetic flux density Bs shows a slight decrease. Fe83.3Si4Cu0.7B6P6 nanocrystalline alloy exhibits excellent soft-magnetic properties with a high saturation magnetic flux density Bs of 1.77 T, low coercivity Hc of 4.2 A/m and high effective permeability μe of 11,600 at 1 kHz.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,