Article ID Journal Published Year Pages File Type
166796 Combustion and Flame 2013 7 Pages PDF
Abstract

The effects of chemi-ion current induced flow perturbations in a premixed, laminar propane/air flame at atmospheric pressure have been measured with 30 ms-wide applied pulsed voltages. Single-shot OH and acetone planar laser-induced fluorescence (PLIF) images have been collected to measure the spatio-temporal structural changes to a laminar flame with incoming flow speed of 2 m/s in response to positive polarity voltage pulses of 2.8 kV over a 20 mm electrode gap. OH and acetone PLIF are specifically chosen to measure reaction zone modification as the flame undergoes large-scale, stochastic changes. These large-scale changes of flame structure are observed after the flame becomes fully crushed and unstable behavior occurs lasting until the end of the applied voltage pulse. The experimental results of combined OH and acetone PLIF presented in this paper show a significant widening of the reaction zone observed during this unstable behavior. This widening of the reaction zone is indicative of a flame brush normally observed in turbulent flames, demonstrating the ability of the sub-breakdown applied voltage to cause a laminar flame to a transitioning-to-turbulent behavior.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,