Article ID Journal Published Year Pages File Type
1667993 Thin Solid Films 2011 8 Pages PDF
Abstract

Nanolayered materials consisting of alternate layers of two different metals offer enhanced mechanical properties such as hardness but the strengthening mechanism is not well understood when the bilayer thickness approaches a few nanometers. Here, we report on the uniaxial compression of aluminum/palladium pillars (900 nm diameter) with bilayer thickness = 2, 20 and 80 nm. We observe that the deformation behavior of these pillars depends on the value of bilayer thickness, changing from dislocation driven plasticity at large bilayer thickness to shear due to grain rotation via grain boundary sliding at small bilayer thickness. The transition occurs at about a bilayer thickness of 20 nm where a mixture of the two mechanisms is apparent.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , ,