Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1668080 | Thin Solid Films | 2011 | 6 Pages |
Thin films of HfAlO3, a high-k material, were etched using inductively-coupled plasma. The dry etching mechanism of the HfAlO3 thin film was studied by varying the Cl2/Ar gas mixing ratio, RF power, direct current bias voltage, and process pressure. The maximum etch rate of the HfAlO3 thin film was 16.9 nm/min at a C12/(C12 + Ar) ratio of 80%. Our results showed that the highest etch rate of the HfAlO3 thin films was achieved by reactive ion etching using Cl radicals, due to the high volatility of the metal-chlorides. Consequently, the increased chemical effect caused an increase in the etch rate of the HfAlO3 thin film. Surface analysis by x-ray photoelectron spectroscopy showed evidence that Hf, Al and O reacted with Cl and formed nonvolatile metal-oxide compounds and volatile metal-chlorides. This effect may be related to the concurrence of chemical and physical pathways in the ion-assisted chemical reaction.