Article ID Journal Published Year Pages File Type
1668615 Thin Solid Films 2011 8 Pages PDF
Abstract

This study uses a low temperature thermal chemical vapor deposition with an applied external magnetic field to grow carbon nanotubes (CNTs) on Ni/Ag-printed glass substrates. A mixture of C2H2 and H2 gas was used for the growth of the CNTs. A Ni catalyst layer was deposited on the Ag-printed glass substrate by pulse electroplating. Scanning electron micrographs as well as the presence of two sharp peaks at 1320 cm−1 (D band) and 1590 cm−1 (G band) in the Raman spectra indicate that the graphitized structure of CNTs synthesized under a magnetic field has higher quality (i.e., a D-band to G-band intensity ratio of 0.303) than CNTs synthesized without a magnetic field. Transmission electron micrographs show a fine Ni catalyst at the tip of the tube for CNTs synthesized under a magnetic field, exhibiting a CNT “tip-growth” model. The synthesis of CNTs in the presence of a magnetic field also generates better field emission properties and better lighting morphology than without a magnetic field.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , , , ,