Article ID Journal Published Year Pages File Type
1668714 Thin Solid Films 2010 6 Pages PDF
Abstract

ZrN1.20/Zr0.44Al0.56N1.20 multilayer films as well as ZrN1.17 and Zr0.44Al0.56N1.20 films were deposited by reactive arc evaporation on WC–Co substrates. Samples were post-deposition annealed for 2 h at 800–1200 °C. As-deposited and heat treated films were characterized by scanning transmission electron microscopy, X-ray diffraction and nanoindentation. The thermal stability was studied using a combination of differential scanning calorimetry, thermogravimetry, and mass spectrometry. The as-deposited Zr0.44Al0.56N1.20 film exhibits a nanocomposite structure of cubic and wurtzite ZrAlN. During annealing, the formation of ZrN- and AlN-rich domains results in age hardening of both the Zr0.44Al0.56N1.20 and the ZrN/ZrAlN multilayers. The age hardening is enhanced in the ZrN/ZrAlN multilayer due to straining of the ZrAlN sublayers in which a maximum hardness of 31 GPa is obtained after annealing at 1100 °C.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,