Article ID Journal Published Year Pages File Type
1669379 Thin Solid Films 2010 6 Pages PDF
Abstract

We report on the fabrication of organic thin-film transistors (OTFTs) with a spun cross linked poly-4-vinylphenol (PVP) dielectric on a polyethersulphone (PES) flexible substrate. To improve the electrical performance of OTFTs, we employed a random single-walled carbon nanotubes (SWNTs) network as a carrier transfer underlay without sacrificing the flexibility of the TFTs. The random SWNTs showed that they can act as a semiconducting channel and conduction path to shorten the channel length in our TFTs. The flexible thin-film transistors (TFTs) with a random SWNTs/pentacene bilayer as an active channel exhibited an improved saturation field effect mobility (µsat) of 2.6 × 10− 1 cm2/Vs compared to that of TFTs without the SWNTs underlay, while creating only a minor reduction of the current on/off ratio.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,