Article ID Journal Published Year Pages File Type
166948 Combustion and Flame 2013 12 Pages PDF
Abstract

Limit cycles of combustion instabilities can be estimated by studying the nonlinear behavior of flame dynamics. In the present study the flame describing function (FDF) framework is combined with a linear acoustic Helmholtz solver in order to estimate the growth rate of the acoustic perturbations in a swirled combustor. It is assumed that when this growth rate equals the inherent dissipation of the system, acoustic oscillation amplitudes cease to grow and a stationary state, i.e., a limit cycle, is reached. In the same way, the FDF is combined with an analytical acoustic model for a quasi-1D version of the combustor. Numerical and analytical results are compared to experimental data and a reasonable agreement is obtained in terms of frequency, growth rate and amplitude of oscillations at the limit cycle.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,