Article ID Journal Published Year Pages File Type
1669662 Thin Solid Films 2010 10 Pages PDF
Abstract

Nanocomposite (Ti1−xFex)Cy films with different compositions have been deposited by dc magnetron sputtering at 450 °C. The sputtered films could dissolve as much as 20–30 at.% of Fe on the Ti sites which is far above the maximum solid solubility at equilibrium. The solubility was dependent on the carbon content and more carbon-rich films could dissolve more Fe without the formation of Fe-precipitates. The addition of Fe also reduced the grain size of the carbide particles. Upon annealing, α-Fe starts to precipitate and the amount and size of these precipitates can be controlled by the annealing procedure and from the total composition of the as-deposited films. Mechanical and tribological studies show that some compositions of the (Ti1−xFex)Cy films have very good wear-resistant properties. These results together with magnetization measurements suggest that Ti–Fe–C films can be used as a wear-resistant magnetic thin film material.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , ,