Article ID Journal Published Year Pages File Type
1670541 Thin Solid Films 2008 5 Pages PDF
Abstract

The strained-Si:C long channel MOSFET on a relaxed SiGe buffer is demonstrated in this study. The extracted electron mobility showed an enhancement of ~40% with the incorporation of 0.25% carbon in strained-Si long channel NMOSFETs. However, no improvement was seen in the output characteristics of the strained-Si:C PMOSFET. The performance enhancement seen is less than the theoretical prediction for increasing carbon content; this is due to the high alloy scattering potential with carbon incorporation, high interface state density (Dit) at the oxide/strained-Si:C interface and interstitial carbon induced Coulomb scattering. However, increased amounts of C may result in degraded device performance. Therefore, a balance must be struck to minimize C-induced extra Coulomb and alloy scattering rates in the fabrication of these devices.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,