Article ID Journal Published Year Pages File Type
1670652 Thin Solid Films 2010 4 Pages PDF
Abstract

Nanostructured Er3+–Si nanoparticles (NPs) codoped Al2O3 films were synthesized by a one step laser based deposition process which allows to form the Si NPs in situ at room temperature, and to control their size and separation with the Er ions in the nanoscale. Two different thermal annealing treatments are studied in order to optimize the photoluminescence (PL) emission: rapid thermal annealing (RTA) at 900 °C during 2 min, and conventional furnace step annealing at different temperatures up to 750 °C for 1 h. After RTA process the films show an important enhancement on the photoluminescence lifetime values which is related to a reduction of the non-radiative decay channels. Nevertheless, the Si NPs to Er ions energy transfer is strongly reduced. In contrast after conventional furnace annealing up to 700 °C, although there is only a moderate increase of the photoluminescence lifetime values, the excitation of Er ions through Si NPs is still active and as a consequence a large enhancement of the photoluminescence intensity with respect to the Er-only doped film is achieved. These different behaviours are most likely related to structural and chemical changes in the Er environment upon the different annealing processes.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,