Article ID Journal Published Year Pages File Type
1670661 Thin Solid Films 2010 4 Pages PDF
Abstract

The effect of Ni-, Co- and Fe-substitution for Cu on the thermal conductivity of La5Ca9Cu24O41 thin films is investigated. Highly b-axis oriented polycrystalline films were grown onto MgO (100) substrates using the pulsed laser deposition technique. Thermal conductivity measurements were made between 90 K and 300 K using the dynamic 3ω method. The room-temperature thermal conductivity of 1% Ni:La5Ca9Cu24O41 and 1% Co:La5Ca9Cu24O41 is approximately 15% smaller than the thermal conductivity of pristine La5Ca9Cu24O41 thin films of similar thickness. On the other hand, the thermal conductivity of 1% Fe:La5Ca9Cu24O41 is approximately the same as the thermal conductivity of pristine La5Ca9Cu24O41 thin films of similar thickness. These results enable us to indirectly conclude that Ni2+ and Co2+ ions substitute Cu2+ ions in the crystal structure while Fe ions are not incorporated in the lattice.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,