Article ID Journal Published Year Pages File Type
1670906 Thin Solid Films 2010 7 Pages PDF
Abstract

Hexagonal boron carbonitride (h-BCN) hybrid films have been synthesized on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition using tris-(dimethylamino)borane as a single-source molecular precursor. The films were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) and Raman spectroscopic measurements. XPS measurement showed that the B atoms were bonded to C and N atoms to form the sp2–B–C–N atomic hybrid chemical environment. The atomic composition estimated from the XPS of the typical sample was found to be almost B1C1N1. NEXAFS spectra of the B K-edge and the N K-edge had the peaks due to the π* and σ* resonances of sp2 hybrid orbitals implying the existence of the sp2 hybrid configurations of h-BCN around the B atoms. The G band at 1592 and D band at 1352 cm− 1 in the Raman spectra also suggested the presence of the graphite-like sp2–B–C–N atomic hybrid bonds. The films consisted of micrometer scale crystalline structure of around 10 µm thick has been confirmed by the field emission scanning electron microscopy.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,