Article ID Journal Published Year Pages File Type
1671051 Thin Solid Films 2010 4 Pages PDF
Abstract

Novel sublayer surface treatments were investigated to improve the conductivity of aluminum-doped zinc oxide (ZnO:Al) fabricated by using dc magnetron sputtering on a glass substrate. Introducing artificial minute flaws on the surface of glass substrates enhanced the crystallinity of ZnO:Al films and decreased the resistivity accompanying the increase of electron mobility. Combination of the surface treatment and sputter beam control, i.e., interruption of high-energy oxygen with shadow masks, further reduced the resistivity of the film to 3.7 × 10− 4 Ω cm (thickness 70 nm).

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , ,