Article ID Journal Published Year Pages File Type
1671076 Thin Solid Films 2010 5 Pages PDF
Abstract

Potential improvements in the performance of tandem amorphous silicon/microcrystalline silicon (a-Si:H/μc-Si:H) solar cells, related to the TCO superstrates with enhanced scattering properties are studied. In particular, optical effects of a high haze double textured (W-textured) SnO2:F TCO superstrate are analyzed and compared to the properties of the pyramidal type SnO2:F TCO superstrate. Solar cell with W-textured superstrate exhibits higher long-wavelength external quantum efficiency of the bottom μc-Si:H cell than the one with pyramidal type TCO superstrate. Optical simulations are employed to study the potential improvements of the solar cell performance if ideal haze parameter (H = 1) and/or a broad angular distribution function (Lambertian) of scattered light are applied to textured interfaces in the solar cell structure. Simulations reveal significant improvements in long-wavelength quantum efficiencies if a broad angular distribution function of scattered light is applied. Optical losses in the cells with enhanced scattering properties are analysed and evaluated in terms of short-circuit current losses in the supporting layers and losses due to reflected light.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , , , , ,