Article ID Journal Published Year Pages File Type
1671086 Thin Solid Films 2010 4 Pages PDF
Abstract

Excess oxygen and 1-at% Mg co-doped CuScO2[3R](0001) epitaxial films were prepared on a-plane sapphire substrates by combining two-step deposition and post-annealing techniques. The optical and electrical transport properties of the co-doped epitaxial films were compared with those of the CuScO2[3R](0001) epitaxial films. No significant increase in optical absorption was observed in the co-doped epitaxial films, and the energy gap for direct allowed transition was estimated at 3.7 eV. The carrier concentration of CuScO2[3R](0001) epitaxial films was controlled from ~ 1016 cm- 3 to ~ 1018 cm- 3 at room temperature by adjusting the excess oxygen and Mg co-doping. The electrical conductivity, carrier concentration, and Hall mobility of the most conductive film were 3.6 × 10- 2 Scm- 1, 8.5 × 1017 cm- 3 and 2.6 × 10- 1 cm2V- 1 s- 1 at room temperature, respectively. The temperature dependence of the electrical transport properties of the film exhibited semiconducting characteristics, and the activation energy estimated from the temperature dependence of the carrier concentration was 0.50 eV.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , ,