Article ID Journal Published Year Pages File Type
1671261 Thin Solid Films 2010 7 Pages PDF
Abstract

In this paper, we present numerical simulations of the residual stresses developed between diamond coatings and Ti-6Al-4V substrates when using chemical vapour deposition technique. The large difference in thermal expansion coefficients of diamond and titanium alloys results in high residual stresses in the diamond film. This could lead to interfacial cracking and material failure. The finite element method was used to simulate the cooling process of diamond films at various thicknesses and deposited at temperatures ranging from 600 °C to 900 °C. The influence of different parameters such as temperature, film thickness, material characteristics, geometry and edge effects are investigated for different case geometries. The film debonding and cracking is discussed and numerical results are compared with existing experimental and numerical results. Finally, some propositions are made to enhance the experimental process in order to reduce the residual stress intensities and the possible material degradation.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,