Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1671698 | Thin Solid Films | 2008 | 5 Pages |
In the VUV spectrum we see a significant decrease in reflection due to organic contamination on the surface of mirrors. To study VUV mirrors it is requisite to have calibration standards. Such standards are useless as calibration tools if the surface has organic contamination. For our standard, we use a thermally oxidized silicon wafer with a 27 nm oxide overlayer. We found that silicon wafer samples capped with native oxide acquire 0.1 to 0.2 nm of organic contamination within two hours of being cleaned with stored in closed, but nonvacuum, conditions. After a week there is an additional 0.2 to 0.5 nm deposition after which no further significant deposition is measured up to 90 days. We place the samples in air within one cm of a xenon excimer lamp that radiates 7.2 eV photons which remove half of the remaining contamination every minute. Five minutes exposure is sufficient to clean both fresh and stored samples. Data are determined using spectroscopic ellipsometry (SE) and X-ray photoelectron spectroscopy (XPS). Additionally this paper addresses the need to ensure that these characterization tools are not a source of organic contamination. We determined that the antechamber of our XPS was contaminating samples at a rate of 0.6 nm/30 min as they waited for transfer to the analysis chamber. This contamination was virtually eliminated by attaching an oxygen radical source (ORS) device (Evactron® C De-Contaminator RF Plasma Cleaning System) directly to the antechamber.