Article ID Journal Published Year Pages File Type
1671862 Thin Solid Films 2009 4 Pages PDF
Abstract

Cubic boron nitride (c-BN) films produced by PVD and plasma-assisted CVD techniques typically exhibit undesired high compressive stresses. One of the effective and feasible methods to reduce stress and hence improve film adhesion has been a controlled addition of a third element into the film during deposition. In the present study, BN films were grown on to silicon substrates using reactive magnetron sputtering with a hexagonal BN target. An auxiliary flow of methane was mixed into argon and nitrogen as the working gas. The deposition was conducted at various methane flow rates at 400 °C substrate temperature, 0.2 Pa total working pressure, and − 250 V r.f. substrate bias. The microstructure of the deposited films was then examined in dependence of the methane flow rate. With increasing methane flow rate from 0 to approx. 2.0 sccm, the fraction of the cubic BN phase in the deposited films decreased gradually down to approx. 75 vol.%, whereas the film stress was reduced much more rapidly and almost linearly in relation to the methane flow rate. At 2.1 sccm methane, the stress became approx. 3 times reduced. Owing to the significantly decreased film stress, adherent, micrometer thick, cubic-phase dominant films can be allowed to form on silicon substrate. The microstructure of the films will be illustrated through FTIR and XRR.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,