Article ID Journal Published Year Pages File Type
1672541 Thin Solid Films 2009 9 Pages PDF
Abstract

Thin films of zirconium oxynitride (ZrNO) and titanium oxynitride (TiNO) have been deposited onto Si(100) substrates at room temperature by radiofrequency magnetron sputtering in an argon–oxygen–nitrogen atmosphere. Single oxynitride layers have been stacked to obtain a multilayer structure. The film structure has been determined by X-ray diffraction while compositional analysis has been performed by X-photoelectrons spectroscopy. Structural analysis has shown that TiNO can be represented as a cubic structure where oxygen atoms replace nitrogen ones while ZrNO can be described as a cubic ZrO2 where nitrogen atoms replace oxygen ones. Besides the main peak, the multilayer films show satellite peaks, proving the formation of the stacked structure. The final films stoichiometry has been explained by a growth model. It establishes that in TiNO films the nitrogen vacancies filling by reactive reactions with oxygen atoms is favourite while for ZrNO films the oxygen vacancies filling by energetic nitrogen atoms is more likely to happen. The different behaviour between TiNO and ZrNO is further confirmed during the multilayer growth.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,