Article ID Journal Published Year Pages File Type
1672569 Thin Solid Films 2009 5 Pages PDF
Abstract

Pd-doped SnO2 sputtered films with columnar nanostructures were deposited using reactive magnetron sputtering at the substrate temperature of 300 °C and the discharge gas pressures of 1.5, 12, and 24 Pa. Structural characterization by means of X-ray diffraction and scanning electron microscopy shows that the films composed of columnar nanograins have a tetragonal SnO2 structure. The films become porous as the discharge gas pressure increases. Gas sensing measurements demonstrate that the films show reversible response to H2 gas. The sensitivity increases as the discharge gas pressure increases, and the operating temperature at which the sensitivity shows a maximum is lowered. The highest sensitivity defined by (Ra − Rg) / Rg, where Ra and Rg are the resistances before and after exposure to H2, 84.3 is obtained for the Pd-doped film deposited at 24 Pa and 300 °C upon exposure to 1000 ppm H2 gas at the operating temperature of 200 °C. The improved gas sensing properties were attributed to the porosity of columnar nanostructures and catalytic activities of Pd doping.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , ,