Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1672817 | Thin Solid Films | 2009 | 9 Pages |
Thin gold films were deposited on float glass substrates held at cryogenic temperatures down to 77 K and investigated in-situ using X-ray reflectometry and surface sensitive reflection mode X-ray absorption spectroscopy (XAFS). The combination of these in-situ X-ray methods with simultaneous electrical resistivity measurements yields information about the surface and volume microstructure of the deposited films as a function of the deposition temperature and their changes induced by a subsequent annealing treatment. The surface sensitive XAFS experiments clearly proved that the films exhibit a polycrystalline structure throughout the temperature range studied here. The data were fitted using a correlated Debye-model. The results show that for film deposition at low substrate temperatures < 130 K, a significantly decreasing Debye-temperature was found, reaching values of about 100 K in comparison to 165 K for the polycrystalline bulk material. This decrease was interpreted to be predominantly related to defective film regions with an increased static disorder.