Article ID Journal Published Year Pages File Type
1673148 Thin Solid Films 2009 4 Pages PDF
Abstract

We have investigated the effect of film thickness of copper phthalocyanine (CuPc) on improving fluorinated copper phthalocyanine (F16CuPc) thin film transistor (TFT) performance with an organic pn junction. Electron field-effect mobility is exponentially enhanced up to 2.0 × 10− 2 cm2 V− 1 s− 1 with increasing of CuPc film thickness, and then unchanged when the CuPc thickness is over the saturation thickness (3 monolayers). The charge carrier density at the interface of F16CuPc/CuPc decreases the total TFT resistance, which leads to the increase of mobility. Threshold voltage is suppressed with increasing CuPc films. On the other hand, larger current on/off ratio is obtained when islanded CuPc films are formed on the surface of F16CuPc films. Therefore, employing an organic pn junction is an effective and simple method to fabricate high performance of n-channel transistors for practical applications.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,