Article ID Journal Published Year Pages File Type
1673207 Thin Solid Films 2009 4 Pages PDF
Abstract

Organic light-emitting diodes were prepared using titanium oxide (TiO2) ultra-thin film by RF magnetron sputtering as the hole buffer layer. The device configuration is ITO/TiO2/N-N′-diphenyl-N-N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine/tris(8-quinolinolato)-aluminum/LiF/Al. The maximum luminous efficiency for the 1.2 nm TiO2 device is increased by approximately 46% (6.0 cd/A), in comparison with that of the control device (4.1 cd/A). The atomic force microscopy shows that with the insertion of TiO2 buffer layer, the roughness of ITO surface decreases, which is favorable to improve the device luminance and increase the device lifetime. The mechanism behind the enhanced performance is that the TiO2 layer enhances most of the holes injected from the anode and improves the balance of the hole and electron injections.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,