Article ID Journal Published Year Pages File Type
1673236 Thin Solid Films 2009 4 Pages PDF
Abstract

A gallium nitride (GaN) epitaxial layer was grown by metal-organic chemical vapor deposition (MOCVD) on Si (111) substrates with aluminum nitride (AlN) buffer layers at various thicknesses. The AlN buffer layers were deposited by two methods: radio frequency (RF) magnetron sputtering and MOCVD. The effect of the AlN deposition method and layer thickness on the morphological, structural and optical properties of the GaN layers was investigated. Field emission scanning electron microscopy showed that GaN did not coalesce on the sputtered AlN buffer layer. On the other hand, it coalesced with a single domain on the MOCVD-grown AlN buffer layer. Structural and optical analyses indicated that GaN on the MOCVD-grown AlN buffer layer had fewer defects and a better aligned lattice to the a- and c-axes than GaN on the sputtered AlN buffer layer.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,