Article ID Journal Published Year Pages File Type
167336 Combustion and Flame 2011 9 Pages PDF
Abstract

Oxygen-enriched combustion is of great interest for industrial applications, since membrane separation technology can be used. The objective of this work is to provide unique data on laminar burning velocity, a key parameter in real combustion development, for the oxygen-enriched combustion of an iso-octane/air mixture for various dilution (by air or CO2) cases. Experiments were carried out in a stainless steel combustion chamber at atmospheric pressure and 373 K. The iso-octane was mixed with a mixture of O2, CO2, and N2. The volume fraction of O2 was varied from 21% to 29% and CO2 was varied from 0% to 28%. The classical shadowgraphy technique was used to detect the reaction zone in order to deduce the un-stretched burning velocity, using a nonlinear methodology. All the experimental data were compared with the numerical results obtained with chemical kinetic schemes available in the literature. For further experimental investigations, a correlation is proposed to predict laminar burning velocity as a function of the quantity of O2 and CO2 in the gas mixture. Finally, analytical and experimental data concerning Markstein length are discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,