Article ID Journal Published Year Pages File Type
1673803 Thin Solid Films 2008 4 Pages PDF
Abstract

The effect of varying filament and substrate temperatures on the structure and electrical conductivity of crystalline SiC films prepared by HWCVD technique are described in this paper. At a constant filament temperature, the electrical conductivity of the SiC films increases with increasing substrate temperature. However, TEM studies show that there is no change in the size of the SiC columnar grains. On the other hand, a significant variation in filament temperature at constant substrate temperature leads to a variation of structure and conductivity. Raman spectroscopy and TEM studies reveal that crystallinity improves with increase in filament temperature. Furthermore, a μc-Si phase exists alongside SiC at low filament temperature (1750 °C).

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , ,