Article ID Journal Published Year Pages File Type
1674224 Thin Solid Films 2007 7 Pages PDF
Abstract

The electronic structures and total energies of BaSi2–SrSi2 and BaSi2–CaSi2 systems have been calculated using the first-principle pseudopotential method to clarify the band gap tunability of BaSi2 by alloying with Sr or Ca. From an energetic consideration of the compounds where all the BaI sites or all the BaII sites of the BaSi2 lattice are preferentially replaced by Sr or Ca, it is expected that the BaI site will be preferentially replaced by Sr rather than the BaII sites. Compounds where all the BaII sites are replaced by Sr or all the BaII or all the BaI sites are replaced by Ca are energetically unfavorable compared to the undissolved system of BaSi2 and SrSi2 or CaSi2. The effect of the addition of Sr or Ca into the BaSi2 lattice on the gap value is different depending on the replaced sites of Ba. The replacement of BaI site by Sr will broaden the band gap of BaSi2, which is consistent with the observed results.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, ,