Article ID Journal Published Year Pages File Type
1674233 Thin Solid Films 2007 5 Pages PDF
Abstract

We have investigated the effect of FeSi2 source purity on the electrical property of β-FeSi2 grown from solution. A high-purity FeSi2 source avoided a contamination of Cu and W metals was synthesized by melting a high-purity Fe (5N) and Si (5N-up) in a quartz ampoule. Glow discharge mass spectrometry revealed that the purity of the FeSi2 source synthesized using 5N-Fe and a quartz-ampoule-melting process is one order of magnitude higher than that of the conventional arc-melted FeSi2 source using 4N-Fe. The β-FeSi2 crystals grown using the high-purity FeSi2 and Zn solvent showed n-type conduction, whereas those grown using the arc-melted FeSi2 showed p-type. The carrier concentration of the n-type crystals was (4.9–6.3) × 1018 cm− 3, which was more than 10 times higher than that of the p-type crystals (5.2 × 1017 cm− 3). From the ICP-MS and SIMS analysis of the grown crystals, we found that dominant impurity concentrations (Cr, Mn, Co, Ni, Cu, Zn and W) in the p-type crystals were higher than those in the n-type ones. Therefore, the p-type conductivity of undoped crystals grown using Zn solvent results from unintentional doping by the high impurity level of the used FeSi2 source.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , ,